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This article presents a theoretical framework to evaluate XML retrieval. XML retrieval deals
with retrieving those document components, the XML elements, that specifically answer a

query. In this paper, theoretical evaluation is concerned with the formal representation of
qualitative properties of retrieval models. It complements experimental methods by showing
the properties of the underlying reasoning assumptions that decide when a document is about
a query. We define a theoretical methodology based on the idea of ‘aboutness’ and apply

it to current XML retrieval models. This allows comparing and analyzing the reasoning be-
haviour of XML retrieval models experimented within the INEX evaluation campaigns. For
each model we derive functional and qualitative properties that qualify its formal behaviour.

We then use these properties to explain experimental results obtained with some of the XML
retrieval models.

Background and Motivation

According to INEX, the evaluation initiative for XML re-
trieval (Gövert, Kazai, Fuhr, & Lalmas, 2006), the aim of
XML retrieval is to retrieve not only relevant document com-
ponents, but those at the right level of granularity, i.e. those
that specifically answer a query. XML, contrary to HTML,
separates the logical structure of documents from the layout.
The logical structure of an XML document forms a tree of
elements, which starts with a root element and has edges be-
tween elements.1 Queries can also contain structural hints or
be purely content-based.

To evaluate how effective XML retrieval approaches use
this structure to return specific answers, it is necessary to
consider whether the ‘right’ level of the structure is correctly
identified. For this purpose, two dimensions of “relevance”
have been used at INEX when evaluating XML retrieval ef-
fectiveness. The general relevance of an element (how rele-
vant the information contained in the element is) is captured
in the INEX exhaustivity dimension2, whereas the specificity
dimension indicates how focused an element is (the element
does not contain non-relevant information). INEX uses these
two dimensions to evaluate the effectiveness of the more
complex task of retrieving structured documents, where the
structure is represented through the XML mark-up.

C. J. van Rijsbergen (1989) suggested that, given the in-
creasing complexity of a retrieval task, as it is apparent in
XML retrieval, an experimental approach to information re-

trieval (IR) should be complemented with a theoretical eval-
uation. In this sense, a theoretical evaluation can be com-
plementary to an experimental evaluation if it helps to clar-
ify the assumptions of retrieval models and if it can identify
the characteristics leading to a particular experimental be-
haviour.

Theoretical evaluation

In this paper, the basis of our theoretical evaluation is the
logical approach to IR (Huibers, 1996). In 1971, Cooper
(1971) coined the term ‘logical relevance’ for an objective
view on relevance, in which the topical relation between doc-
ument and query is considered. Van Rijsbergen and others
have expressed logical relevance in terms of the implication
d → q, where d and q represent, respectively, the document
and the query (C. J. van Rijsbergen, 1989). Chiaramella
(2001) used two implications to describe structured docu-
ment retrieval (XML retrieval is a special albeit most dom-
inant application of structured document retrieval (Lalmas,
2009)): d → q modelling exhaustivity and q → d modelling
specificity. Following Huibers’ formalism and approach,
we call topical implications between query and document
‘aboutness’, where aboutness is described by formally de-
riving the reasoning process involved in IR models.

1 In this paper, elements and document components are used in-

terchangeably.
2 Since 2006, INEX does not refer to exhaustivity anymore, just

relevance and specificity.
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As early as 1977, aboutness is discussed in (Hutchins,
1977), in the context of summarisation of texts and how man-
ual indexers decide a document to be about a topic. Already
then, aboutness is linked to topically and therefore an objec-
tive view on the content of documents. Bruza, Song, and
Wong (2000) contribute an analysis of a common form of
aboutness used in information retrieval and discuss how spe-
cific properties of aboutness can have an impact on exper-
imental performance. Hjørland (2001), on the other hand,
emphasises that a common-sense approach might not be suf-
ficient and should be amended with an investigation into the
epistemological view of aboutness, which takes into consid-
eration the different views groups of people see as making a
query to be about a document.

Our work is less concerned about how users of infor-
mation retrieval system derive aboutness but more with the
question how these systems themselves decide aboutness.
In this sense, it is related to the research in (Greisdorf &
O’Connor, 2003), which asks what are the underlying topical
characteristics that link the output of an information retrieval
system with a user’s information need, or, as Greisdorf and
O’Connor (2003) put it, how it is deciced that the output of an
IR system is ‘on topic’. We also use ‘aboutness’ to describe
the topical relation between a query a document, as an IR
system sees it, and evaluate subsequently the performance of
the system in a theoretical evaluation.

We follow the approach in (C. J. van Rijsbergen & Lal-
mas, 1996) who have used ‘aboutness’ to theoretically evalu-
ate IR models, as have Bruza and Huibers (1994), and Wong,
Song, Bruza, and Cheng (2001). They have all shown that
an aboutness-based theoretical evaluation can be a powerful
tool to evaluate flat document retrieval models. This paper
extends the existing aboutness approaches by concentrating
on XML retrieval models and the assumptions made in some
successful XML retrieval models to decide aboutness using a
combination of structure and content. In (Blanke & Lalmas,
2011), we have already applied an ‘aboutness’ approach to
analyse how XML retrieval models attempt to deliver only
highly specific results. In this paper, we concentrate on ex-
plaining general performance results, i.e. what makes a doc-
ument component ‘about’ a query. The particular emphasis
is the influence of the structure on the aboutness decision.

More recent studies using a theoretical evaluation ap-
proach are the ones by Hui Fang, Cheng Xiang Zhai and
Tao Tao (Fang, Tao, & Zhai, 2004) (Fang & Zhai, 2005).
They present a formal study and a universal framework for
the analysis of IR models, using a set of basic desirable con-
straints that any reasonable retrieval function should satisfy
for good retrieval performance. At first sight, their approach
looks similar to ours. However, they do not rely on a logical
framework with their constraints but rely on the generalisa-
tion of intuitions mainly related to TF-IDF (term frequency
and inverse document frequency) measures. These include
the formalisation of a sensible interaction between TF-IDF:
if given a fixed number of occurrences of query terms, a
document that has more occurrences of discriminative terms
(higher IDF) should achieve a better ranking. Such questions
are interesting to anybody working on a new IR model.

Their approach has advantages towards ours. Ours is more
abstract and high-level, as we will see. As Fang and Zhai
(2005) do not employ a high level of abstraction such as
aboutness but remain within the parameters of standard mea-
sures to improve retrieval directly, immediate recommenda-
tions for further improvements of models can be made. This
advantage is, however, also a disadvantage when it comes
to the analysis of different and new retrieval tasks such as
XML retrieval. Here, we do not yet have commonly agreed
foundations. TF-IDF, for instance, is subject to discussions
in XML retrieval, as, for example, it does not deal well with
the problem of overlap in XML retrieval (Lalmas, 2009).

We remain more abstract and therefore use an aboutness-
based approach. Furthermore, we use concepts from logic
such as monotonic behaviour. To us, on a very abstract level,
a relevance score is a function with various variables that in-
clude often terms and their frequency values, but also other
parameters. We suggest to study aboutness rules and mono-
tonicity and how they behave with respect to these variables.
These will be the basis of our theoretical evaluation frame-
work for XML retrieval.

”

Theoretical evaluation
framework

Our theoretical evaluation methodology consists of three
components, which are presented in the following sections.
This section introduces the first component, a formalism with
a translation to express aboutness symbolically, and the sec-
ond component, which specifies aboutness by deriving rules
of reasoning behaviour. The third section presents the third
component, specific to XML retrieval, the pure type XML
retrieval model to capture the influence of the XML structure
on aboutness. In the forth section, all these components of
the theoretical evaluation are applied to XML retrieval mod-
els, which were successful in the INEX evaluation. The fifth
section, finally, uses the results of the theoretical evaluation
to explain experimental results in INEX. The paper ends with
our conclusions and insights on theoretical evaluation both in
the context of XML retrieval and other areas in information
retrieval.

In this section, we systematically introduce the first two
theoretical evaluation components, starting with the basic
formalism in the next section.

Basic Formalism

Any theoretical evaluation methodology requires for-
malisms, complete enough to characterize the fundamen-
tal properties of retrieval models and complete enough to
study their properties. Following (Bruza & Huibers, 1994),
we use Situation Theory, developed by Barwise and Perry
(1983), for this purpose. Situation Theory is a mathemat-
ical theory of meaning and information with situations as
primitives (Huibers, 1996). Situations are partial descrip-
tions of the world and are composed of infons. In the con-
text of IR, queries and documents are modelled as situations,
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while infons represent information items such as keywords
or phrases.

The aboutness relation between two situations is repre-
sented with the symbol ✷ , using the same symbol as
(Huibers, 1996). If we consider documents and queries to be
situations, then D ✷ Q means that the information in the
document represented by situation D is about the informa-
tion need expressed in the query represented by situation Q.
In standard IR models, a document containing ‘garden’ and
‘house’ would be about a query asking for ‘garden’. Query
and document would share the term ‘garden’, and most IR
models consider a document to be relevant to a query if
they overlap in index terms. However, there might also be
IR models that are not based on pure information overlap
between query and document and would not consider D to
be about Q in that case. A model could, for instance, limit
aboutness to those cases, where there is a significant overlap
in terms.

We use this basic formalism to define the translation of a
model as the first step in our theoretical evaluation.

Translation

Translation is the symbolic representation of the retrieval
model’s handling of information. It is described by a func-
tion map that ‘maps’ information to its formal representa-
tion using the results of the indexing process. Infons are
represented by 〈〈k〉〉, where k stands for any indexed term
or other information descriptor. A set of infons is a situation:
{〈〈k1〉〉,〈〈k2〉〉}. N-ary relationships R between infons i j are
themselves infons and are modelled by 〈〈R, i1, ..., in〉〉. A
simple example without relations is {〈〈house〉〉,〈〈garden〉〉}.
Later on, we cover a more complex example. Translation is
closely linked to building a document information represen-
tation through indexing.

According to (C. J. v. van Rijsbergen, 2004), with about-
ness we come from the concrete notion that descriptors in
indexes represent properties of documents. The simple ex-
ample above demonstrates the translation of a simple docu-
ment representation as a bag of terms. For XML retrieval,
we need to add structural relationships to such simple repre-
sentations in order to capture the XML structure. We define
a translation to capture these later on.

Throughout the paper, we use upper case letters from the
middle of the alphabet such as S, T for situations. Any-
thing these situations represent like keywords but later on
also structured information is symbolized with letters from
the beginning of the alphabet like A or B.

Operators

In addition to the definition of aboutness, we need op-
erators that we can use to relate situations with one an-
other. For instance, situations can be merged to form
new situations. With ⊗, we formalise the composition
of situations, e.g. {〈〈house〉〉} and {〈〈garden〉〉} can be
combined to {〈〈house〉〉 ,〈〈garden〉〉}. Preclusion, sym-
bolised by ⊥, expresses that information in situations
clashes. They cannot be meaningfully combined such as

{〈〈 f lying birds〉〉 ,〈〈penguins〉〉}. If defined at all, preclu-
sion describes mostly semantic relationships (Wong et al.,
2001). However, most models have no notion of information
clashes. ≡ states that two situations are equivalent, i.e. they
contain the same information. According to the equivalence
relationship, situations should be compared according to the
meaning they bear not the names we give them. Lastly, con-
tainment → describes that a situation contains at least the
same information another one has. In Boolean retrieval this
corresponds to, e.g., the implication that for any valid expres-
sion x∧ y, x is also valid.

Rules

Aboutness is defined as a relationship between situations.
In a theoretical evaluation framework, rules are used to de-
fine the reasoning aspects of this relationship. Rules are the
logical representation of how a system decides a document
to be about a query. The rules do not hold for all aboutness
decisions but only for particular ones. Thus, an aboutness de-
cision can be specified by the reasoning rules it incorporates.
The aboutness decision can be further qualified by analysing
how these reasoning rules are implemented by it: fully, con-
ditionally or not at all. If the rules are fully supported they
hold without conditions. If they are conditionally supported,
they are generally supported, except for some special cases.
For instance, aboutness decisions often do not consider any
kind of overlap in a document’s information with an infor-
mation need to be sufficient to decide aboutness but only an
information overlap of a particular size. As not all rules hold
for all systems and in the same way, we can use them to
deliver commonalities and differences between systems. By
comparing the rules each system incorporates and the way
it does so, we are able to give an overall comparison of the
behaviour of retrieval systems.

We use a subset of rules given by (Huibers, 1996) and by
(Wong et al., 2001) to describe aboutness proof systems. We
use those rules that in our experience best describe system
performance in XML retrieval3. These are generally based
on the non-monotonic reasoning rules developed in (Kraus,
Lehmann, & Magidor, 1990). For a complete analysis of the
rules, please compare (Blanke, 2012), where we also moti-
vate our choice of rules based on their effectiveness to ex-
plain experimental performance.

In this paper, we concentrate for space reasons on the fol-
lowing rules:

• Reflexivity states that a situation S is about itself: S ✷ 

S.
• Symmetry states that if situation S is about another sit-

uation T (S ✷ T ), then also T ✷ S.
• Transitivity makes a transitive conclusion: If S ✷ T

and T ✷ U , then also S ✷ U .
• Left Monotonic Union (LMU) states that if S ✷ T ,

then also S⊗U ✷ T . LMU has a variant called Mix, which

3 There is an ongoing debate on which of the rules to use to

best functionally describe aboutness systems. For a comparison see

(Wong et al., 2001) and (Huibers, 1996).
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adds a second assumption. With Mix, we state that if S ✷ U
and T ✷ U , then also S⊗T ✷ U .

• Right Monotonic Union (RMU) states that if S ✷ T ,
then also S ✷ T ⊗U .

Let us discuss LMU in more detail. Huibers (1996) and
Wong et al. (2001) both see the careful consideration of
monotonicity as an important feature of IR. In an about-
ness model unconditionally supporting LMU, a query con-
taining ‘house’ is not only about documents with ‘house’,
but equally valid answers are components with ‘house’ and
‘garden’. This means, aboutness decisions supporting LMU
are not affected by document length. For systems support-
ing RMU, query expansion does not change the aboutness
decision. This means that systems with RMU can expand
the original query and gain a higher recall base while at the
same time not losing what the original query was about. Both
document component and query length are decisive aspects
of aboutness decisions, which underlines the importance of
monotonicity (Wong et al., 2001).

The translation and the aboutness rules were developed
by Huibers (1996) as parts of the theoretical evaluation of
any retrieval model. In XML retrieval, we are in addition
interested in how much a retrieval model uses structure to
support its aboutness decision. Theoretically, we measure
this by determining the qualitative reasoning distance of the
XML retrieval model to its ‘flat’ retrieval model equivalent
(if there is one) and what we call pure type XML retrieval,
which we introduce in the next section.

Pure type XML Retrieval

‘Pure types’ have been developed by the sociologist Max
Weber (see (Weber, 1997 (1903-1917))) and have proven to
be useful tools for comparative studies. A pure type de-
scribes aspects of phenomena, but is not meant to describe
perfect things nor all aspects of any one particular case. It
is rather a purposeful emphasis of aspects common to most
cases of the observed item. In our case, the emphasis is on
the impact of XML structure on the aboutness behaviour. For
each model we compare its reasoning behaviour with those
of other models and look at its consideration of structure
by determining its qualitative reasoning distance to the pure
type model and the ‘flat’ document model, the XML retrieval
model it is based upon. The qualitative reasoning distance is
described by the differences and commonalities in reason-
ing properties. The latter part has not been considered yet
in aboutness investigations and is particularly useful for the
theoretical evaluation of XML retrieval.

As the pure type XML retrieval model is an aboutness sys-
tem in itself, we now go though the steps of an aboutness
based theoretical evaluation, as presented in the theoretical
framework section, namely, aboutness, translations, opera-
tors and rules.

Pure type aboutness

The definition of aboutness for pure type XML retrieval is
directly linked to the INEX view on exhaustivity and speci-
ficity, as developed in detail in (Blanke, 2012). As seen in the

introduction, exhaustivity describes how far the document
component contains all the information in a query, while
specificity describes how little it is about other information
than the one in the query. We use this description to define
pure type aboutness: Say, that a document d is indexed in
such a way that its XML structure is preserved. Then, it is
about a query q according to the INEX view if structure and
content information of q are contained in the structure and
content of d. We represent this hierarchical inclusion with
✂.

To define ✂, we use structure and content at the same
time. Thus, to make this definition work for XML retrieval,
we have to give a symbolic representation of situations that
includes structure and content. We introduce this representa-
tion later on and give a Situation Theory formalism that al-
lows us to represent indexing that preserves XML structure.
But first we give two examples that illustrate the definition
of hierarchical inclusion. In the following example, a section
containing a paragraph about house and garden is generally a
relevant answer to a query asking for a paragraph on house:

Example 〈paragraph〉house〈/paragraph〉 ✂ 〈section〉
〈paragraph〉house, garden〈/paragraph〉〈/section〉

In the example we use the standard notation for XML el-
ements using tags (Lalmas, 2009) for element types. The
paragraph about house and garden is, however, not a partic-
ularly specific answer to the same query as it contains addi-
tional unwanted information about garden. With hierarchical
inclusion, a paragraph just containing house would be a fully
specific answer to a query asking for a paragraph on house,
as in the following example:

Example 〈paragraph〉house〈/paragraph〉 ✂ 〈section〉
〈paragraph〉house〈/paragraph〉〈/section〉

The two examples are both examples of hierarchical inclu-
sion, as the information on the right hand side (document
component) of the ✂ operator contains the information on
the left hand side (query). The examples also illustrate how
for hierarchical inclusion, structure is an equal component
of aboutness. With pure type XML retrieval, we can com-
pare the impact the XML structure has on the reasoning of
different retrieval models. As discussed earlier, most XML
retrieval models are extensions of models that work with flat
and unstructured documents, for which content alone is im-
portant in their reasoning. With the pure type model, we
create a reference model, for which XML structure is fully
included in aboutness.

In the next section we introduce a notation that allows us
to use the power of set theory to perform reasoning that in-
cludes structure and content. This notation substitutes the
direct XML representation of hierarchical inclusion using ✂

as seen in the two examples above and allows for simpler
derivations of reasoning.

Pure type translation

For the pure type translation we make the assumption that
in pure type XML retrieval the XML structure is preserved
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during indexing. We want to express the translation of a
model that uses XML structure in its matching. To define
the translation, we reuse the conceptual graph translation, as
defined in (Huibers, Ounis, & Chevallet, 1996). Their con-
ceptual graphs map well onto XML trees.

The conceptual graph model has been developed in (Sowa,
1992) and analysed from an aboutness point of view by
Huibers et al. (1996). In the model, a query q and a document
d are both seen as conceptual graphs. The knowledge in the
document collection is modelled as conceptual relationships
between concept types. Content is found as referents to con-
cept types. For XML, we consider these concept types to
be element types, while we limit the set of relationships to
the parent and the attribute relationship. Content is found in
XML as part of element types. Based on these considera-
tions, we define pure type map next.

Definition of Map. In this section, we define a transla-
tion that preserves the XML structure. As in (Huibers et al.,
1996), we want to represent a graph (in our case an XML
tree) as a set of infons in order to preserve the XML structure.
Intuitively, we can easily map a hierarchical organisation of
information (in an XML tree) to sets, if we consider the par-
ent elements to be the supersets of all sets of information
that its children contain. We then also need a way of repre-
senting the relationship between parents and children in the
same framework. Fortunately for us, we are considering sets
of infons, which can either express content or relationships
between content in the same formalism.

Huibers et al. (1996) develop the approach we are map-
ping on to XML retrieval and state that a conceptual graph
carries information and can be seen as a situation. We say
that an XML element carries information and can be seen as
a situation. For (Huibers et al., 1996), the conceptual graph
situation is constituted of the concepts, referents and rela-
tions that define the information the conceptual graph car-
ries. We need to consider instead element types, content in
element types and parent and attribute relations. As Huibers
et al. (1996) propose to translate each item of a conceptual
graph (concept, referent and relation) into a specific infon,
we propose to do the same with XML elements. Using ele-
ment type, content and relation infons, we next define map
for pure type XML retrieval.

An XML tree consists of XML elements that have element
types and associated content, which we refer to as values.
These elements are connected with edges. We now suggest
to translate XML elements together with their values into set
of infons and to distinguish relational, content and element
types.

Let us assume that d is an XML document. Then, it can
be translated into situations by using a map:

• For each XML element p of d with element type U ,
map has a result {〈〈ElementType,U, p〉〉}, where p is the
unique parameter. Such an infon is called an element type
infon.

• For each XML element p of d with a type U
containing descriptors k1 to kn, map is {map(U) ⊗
〈〈Value,k1, p〉〉, ...,〈〈Value,kn, p〉〉}. p is the unique param-

eter that identifies U . k1 ... kn is the set of n descriptors (for
instance, index terms) that are values of the element type U .
We call these infons value infons. ⊗ is explained later on.

• Say R is a relation between two XML ele-
ments A and B in d. Let E1 and E2 be element
types and {〈〈ElementType,E1, p〉〉} ∈ map(A) and
{〈〈ElementType,E2,q〉〉} ∈ map(B). We can then say
that map(R(AB)) = map(A)⊗{〈〈R, p,q〉〉}⊗map(B). p is
an identifier for E1 and q for E2. We call such an infon a
relational infon, where its parameters are ordered, so that,
for instance, {〈〈Parent, i1, i2〉〉,〈〈ElementType,Article,
i1〉〉,〈〈ElementType,Section, i2〉〉} reads as: Article is a
parent of Section.

Let us consider some examples. A paragraph
about ‘garden’ can be expressed (translated) as
{〈〈ElementType,Paragraph, p〉〉,〈〈Value,garden, p〉〉}
using an identifier p. A section
with two paragraphs is translated into
{〈〈ElementType,Section,s〉〉,〈〈Parent,s, p1〉〉,〈〈Parent,s,
p2〉〉,〈〈ElementType,Paragraph,p1〉〉,〈〈Value,garden, p1

〉〉,〈〈ElementType,Paragraph, p2〉〉,〈〈Value,house, p2〉〉}.
We use the relation Parent to express that the two paragraphs
are the children of the section.

We need to make sure that each XML document corre-
sponds to exactly on set of infons and vice versa. To this end,
we sketch a translation production algorithm leaving out the
definition of the infon parameters, which can be easily de-
duced. We traverse the XML tree in a depth-first manner.
Each time we visit an XML element we create an element
type infon. If we reach a leaf we collect all the descriptors in
the leaf and create a value infon for each of them. We then
backtrack through the tree and while backtracking we create
relational infons to connect the element type infons. Follow-
ing this algorithm, we create a unique XML situation (set
of infons) from each XML document. Furthermore, we can
re-create the tree of the XML document bottom up, starting
with the value infons to create the leaves and then reconnect
the elements by following the relational infons using the el-
ement type infons to define the types of the elements. We
only allow XML situations (set of XML infons), which lead
to a valid XML document according to the definition by the
W3C and therefore conform to the rules of a Document Type
Definition (DTD) or an XML Schema (XSD) (in our case
given by INEX).4

Pure type operators

To perform our aboutness reasoning for pure type XML
retrieval, we need to define operators between XML situ-
ations. We use the same operators as defined earlier, but
change these to make them work for XML situations. We
need these operators to perform aboutness reasoning later in
this paper. Here, we define equivalence ≡ and composition
⊗. Containment → and preclusion ⊥ can be defined simi-
larly.

4 This can be proven by running it against the official W3C

markup validation service: http://validator.w3.org/
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Let us assume that we have two XML situations S and T ,
and a translation function map. Then:

• Two XML situations are equivalent if we
can rename their identifiers and have an equiv-
alent set, e.g.: 〈〈ElementType,Section, i1〉〉 ≡
〈〈ElementType,Section, i2〉〉.

• S⊗ T ≡ map(A)∪map(B), where S ≡ map(A), T ≡
map(B) and A and B are XML documents.
With this pure type translation, structure and content of XML
documents come together in the same formalism. This makes
it easier for us to draw conclusions about the reasoning in-
corporated in a specific XML retrieval system. By using ∪ to
form larger situations, we can now employ the power of set
theory to derive the aboutness reasoning, which allows us to
reuse earlier results developed in (Huibers, 1996).

Rules

Now we show the reasoning rules of pure type XML
retrieval. We first introduce an auxiliary proposition that
greatly simplifies the proofs needed to analyze the pure
type’s reasoning. The proposition is based on our definitions
for translation and aboutness decision and Huibers’ analysis
of conceptual graphs in (Huibers, 1996):

Proposition 1 For XML document components A and B,
B✂A if and if only (or iff) map(A)⊇ map(B).

Proof ⇒: Let B✂A. Then, we know that B has the content
and the structure of a subdocument of A. Using the algorithm
from page 5, we construct two situations S ≡ map(A) and
T ≡ map(B). This means all relational, element types and
value infons from T are also in S. Thus, map(A)⊇ map(B)
using the parameter renaming defined in (Huibers et al.,
1996).
⇐: Let map(A)⊇ map(B). Then, we know that map(B) has
only infons also found in map(A). If we apply the algorithm
to transform situations into XML documents from as shown
on page 5, B needs to have the structure and content of a
subdocument of A and is therefore hierarchically included in
it: B✂A. �

The aim of our translation was to use the power of set theory
in the aboutness proof. Proposition 1 verifies that we can do
aboutness proofs with a relatively simple set operation on the
representation (as situations) of XML trees.

Using Proposition 1, we can now easily show that Reflex-
ivity is given, as map(A)⊇ map(A) with S ≡ map(A). Tran-
sitivity holds. If S ✷ T and T ✷ U , then also S ✷ U .
Say, that S ≡ map(A), T ≡ map(B), and U ≡ map(C). Then,
map(A) ⊇ map(B) as well as map(B) ⊇ map(C). Thus,
map(A)⊇ map(C). Symmetry is not given. From S ✷ T ,
we do not derive that T ✷ S. Again, S ≡ map(A) and
T ≡ map(B). Then, map(A) ⊇ map(B) is not equivalent to
map(B)⊇ map(A).

Now, we demonstrate that the aboutness system of pure
type retrieval fully supports LMU. Given the assumption that
a situation S is about another situation T (S ✷ T ), LMU
offers the conclusion that also S⊗U ✷ T , where U is a

situation. Let us assume, that S ≡ map(A), T ≡ map(B) and
S⊗U ≡ map(C). The premise of LMU can then be rewritten
as B✂A, which is implied by map(A)⊇ map(B) according
to Proposition 1. With the definition of the translation, we
also have map(C)⊇map(A). Therefore: map(C)⊇map(B).
Thus, according to Proposition 1 also C✂B and LMU is fully
supported. Mix is a special case of LMU and thus given,
too. RMU, on the other hand, does not hold. Indeed, from
S ✷ T , we cannot conclude S ✷ T ⊗U .

In the next section, we use the pure type aboutness system
to find out what role structure plays in actual XML retrieval
models, such as those developed and evaluated during INEX.

Theoretical evaluation of XML
Retrieval Models

In this section, we apply our proposed theoretical eval-
uation framework to evaluate XML retrieval models exper-
imented with during INEX. We do not fully specify all
the properties of these models, instead we concentrate on
demonstrating important aspects of our theoretical evaluation
approach that help us explain experimental behaviour. We
begin with a model that builds upon existing flat document
retrieval strategies — XML language model. Afterwards, we
investigate a model specifically designed for XML retrieval
– Gardens Point.

For these two models, we look at the corresponding trans-
lation into formal situations, the reasoning rules, and the re-
lationship to pure type XML retrieval. In a full theoretical
evaluation, we would cover over 20 rules but for the purpose
of this paper, we focus on Transitivity, Reflexivity, Symmetry
and Monotonicity. These often form the basis of a theoretical
evaluation, as we have shown in (Blanke & Lalmas, 2007).
In related work (Blanke, 2012), we could identify these rules
as those that have the stronguest impact on the experimental
behaviour in INEX. The two models, on the other hand, have
been chosen because of their behaviour in the experimental
task we investigate later on. In (Blanke & Lalmas, 2011),
we look at the performance of models in another INEX task,
while Blanke (2012) offers the evaluation of five highly per-
forming models in INEX (in terms of effectiveness).

Language Models

An XML retrieval model that is based on a model for flat
document retrieval and that performed well at INEX is the
language modelling described in (Sigurbjörnsson & Kamps,
2005). We refer to this model as the XML language mod-
elling.

A language model for each document component is calcu-
lated by interpolating the element (Pmle(ti|e)), the document
(Pmle(ti|d)) and the collection (Pmle(ti)) language models:
P(ti|e) = λe ∗ Pmle(ti|e) + λd ∗ Pmle(ti|d) + (1 − λe − λd) ∗
Pmle(ti).

This model is built on the decision that an element d is
about a query q if and if only the information in q can be
found in the element (its representation). We actually have
several aboutness decisions depending on which elements are
indexed, e.g. those above a given size, those that correspond
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to types frequently assessed as relevant, or some types of el-
ements only. We therefore must provide a map function to
translate infons for each chosen approach. We only demon-
strate 2 of them, as the others are built very similarly. Let A
be an element with term t and type e:

• Length based approach: maplength(A) ≡
{〈〈ElementType,e, i〉〉,〈〈Value, t, i〉〉| |A| > κ} where κ

is a length threshold.
• Section based approach: mapsec(A) ≡

{〈〈ElementType,e, i〉〉,〈〈Value, t, i〉〉| e ∈ {Sec}}
The main difference to a flat document language model

is the division into document components instead of docu-
ments. This XML language model retrieval aboutness deci-
sion is the same as for the flat document language model:
d about q if and if only P(ti|e) > θ. In (Blanke, 2012), de-
tails of the threshold θ’s dependency on the query are dis-
cussed. For now, it is enough to say that θ is based on the
smoothing value, which is in any language model the low-
est possible value for an element without query terms. It is
internal to the aboutness decision, as it is dependent on the
overall distribution of the terms in the collection. This allows
the model to be adjusted well to specific collections (in our
case, those used at INEX).

We now continue with the analysis of the reasoning rules
supported by our XML language modelling. To prove the
reasoning rule, we use the proposition that P(ti|e) > θ if
there is an overlap in information between document com-
ponent and query. We omit the proof here. Huibers (1996)
demonstrated that retrieval systems based on this proposi-
tion, generally support Reflexivity, Symmetry and Transitiv-
ity reasoning. We therefore only demonstrate LMU. Say, that
S ≡ map(A), T ≡ map(B) and S⊗U ≡ map(C). Then, we
have C ∩ B ≡/ /0 and C ⊇ A. Thus, A∩ B ≡/ /0, and LMU is
unconditionally supported.

Mix is a special case of Left Monotonic Union and is
therefore also supported. Similarly to Left Monotonic Union,
only those situations can be combined, which are part of the
same index. This is interesting, as for XML retrieval par-
ents and children are about the same queries and Mix should
therefore be an automatic property, because it extends Left
Monotonic Union. However, this is not the case for this
model, where children and parents can be part of distinct in-
dexes.

This language modelling approach for XML retrieval is
distinctively different from our pure type XML retrieval
model. Structure is included in the aboutness decision by
a priori dividing elements into several different indexes and
not part of the aboutness reasoning itself. We will see in
the section on the experimental evaluation results how this
expresses itself in the experimental evaluation results.

Gardens Point

The Gardens Point Model (Geva, 2005) is a model that
was specifically designed to fit the requirements of XML re-
trieval, by discriminating aboutness for leaf and branch ele-
ments. A leaf element is considered to be about a query if it
contains at least one query term. A branch element is about

a query if its subtree contains at least one leaf element that is
about the query. A document component d is about a query
q if rsv(D,Q)> 0.

For leaf elements L, the scoring function is defined as
rsvL = Kn−1 ∑

n
i=1

ti
fi

. Here, n is the number of unique query

terms, ti is the frequency of the i-th query term in the leaf ele-
ment and fi its collection frequency. Thus, rsvL favours doc-
ument components with many unique query terms while pe-
nalizing query terms frequent in the collection. The weights
of the leaf elements are propagated to form the weights for
the branch elements. For a branch element B, the scoring
function is given by rsvB = D(c)∑

c
i=1 rsvLi

. c stands for the
number of retrieved children elements. A decay factor D(c)
is used to control the propagation, where D(c) = 0.49 for
c = 1 and D(c) = 0.99 otherwise.

In the Gardens Point model, the location of each term
is identified by an absolute XPath expression (Geva,
2005). This means that the complete XML tree structure is
preserved in the element representation. The translation is
therefore the same as in the pure type XML retrieval model.
However, hierarchical inclusion ☎ is not implemented,
because Proposition 1 is not given. rsv(d,q) > 0 does
not mean map(d) ⊇ map(q), as the following example
demonstrates. In the Gardens Point model, a leaf ele-
ment containing ‘house’ and ‘garage’ is about a query
asking for ‘house’. But according to Proposition 1,
{〈〈ElementType,Paragraph, i1〉〉,〈〈Value,House, i1〉〉,〈〈
Value,Garage, i1〉〉} is not about {〈〈ElementType,
Paragraph, i1〉〉,〈〈Value,House, i1〉〉}, as it has additional
information about garages.

According to (Geva, 2005), each term in an XML docu-
ment is identified by three elements in the index: file path,
absolute XPath context and term position within the XPath
context. As a query language, however, Gardens Point
uses NEXI (Geva, 2005), which is an (enhanced) subset of
XPath. Content-only (Geva, 2005) queries are expressed as
a search over the entire article element using NEXI. This
leads to asymmetric reasoning behaviour. Say, we have
a query //article[about(house)] that is about an element
article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1]. Then, we
cannot use article[1]/bm[1]/bib[1]/ bibl[1]/bb[13]/pp[1] as
a query again, as it is not a valid query expression. Thus,
Gardens Point does not support the Symmetry rule.

LMU would be a property of the aboutness systems, if
with S ✷ T we could derive that S⊗U ✷ T . Let us as-
sume that S ≡ map(A), T ≡ map(B) and S⊗U ≡ map(C).
Thus, rsv(A,B) > 0. We are able to then also say that
rsv(A,C) > 0. The sum in the calculation for leaf elements
stay at least the same when adding new information. Sums
in relevance calculation generally promote monotonic be-
haviour (Blanke & Lalmas, 2006). RMU on the other hand
is not given, which again shows how close Gardens Point is
to pure type XML retrieval.

Elsewhere (Blanke, 2012), we have done a complete com-
parison of the reasoning properties with the pure type model
and a ‘flat’ document model derived from an aboutness deci-
sion purely based on rsvL. This comparison reveals that the
model holds for almost the same set of rules as the pure type
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model does. In our theoretical evaluation of XML retrieval
models (limited to two models in this paper), we could see
how XML retrieval models are concerned with controlling
monotonic behaviour as well as other reasoning that support
good performance in XML retrieval. As an example, we have
discussed Symmetry.

GPX does also not support right monotonic reasoning
(RMU). RMU does not necessarily support better retrieval
results. RMU allows us to conclude from the assumption
S ✷ T that also S ✷ T ⊗U . However, in XML retrieval
T might well include a structural condition. For instance,
T alone might point to a section while T ⊗U might point
to a paragraph within a section, which would completely
change the aboutness relation. It is this kind of desirable
behaviour that implies that XML retrieval systems should
be able to change an aboutness decision if the XML context
changes. The description of the monotonic reasoning behav-
ior of XML retrieval models is key to the distinction with flat
document retrieval.

GPX compared to XML language modelling is closer to
pure type XML retrieval especially in terms of the mono-
tonic reasoning behaviour. This is one reason for its con-
vincing behaviour in the experimental evaluation and why it
outperforms XML language modelling in many experimental
evaluation conditions.

Theoretical Analysis of the INEX
Experimental Evaluation Results

In this section, we show how our proposed evaluation
framework for XML retrieval is complementary to experi-
mental results obtained at INEX, on the so-called thorough
retrieval task for content-only (CO) queries (Gövert et al.,
2006). We have concentrated on the INEX 2005 campaign
because since then the fundamentals of the models for that
task have not changed much. The thorough task is con-
cerned with retrieving relevant elements for a given query,
and to rank them according to their estimated relevance to
that query. The thorough task is to be contrasted with the
focused task, which is concerned with returning a list of non-
overlapping elements as answers to a given query. Overlap
occurs when a document component (e.g. a section) and one
of its descendent (e.g. a paragraph in this section) or ascen-
dent (e.g. the chapter containing that section) are both re-
turned as answers. In (Blanke & Lalmas, 2011), we pre-
sented a theoretical framework, also based on Situation The-
ory, to evaluate the focused task. The framework included
a new theoretical evaluation methodology to evaluate filters,
commonly used in INEX to focus the retrieval results on only
the most specific XML elements. In this paper, we are inter-
ested in the underlying task to retrieve relevant XML ele-
ments in general.

We proceed as follows. In the following parts, we intro-
duce first some of the background of the effectiveness mea-
sures used to evaluate the thorough task. We analyse which
of the aboutness reasoning properties promise to deliver good
results under these particular measures. Afterwards, we use
this analysis to explain experimental outcomes for the two

models we have theoretically evaluated.

Aboutness reasoning behind the INEX metrics

We concentrate on the effort-precision/ gain-recall (ep−
gr) metrics used to evaluate the thorough task. Effort-
precision (Kazai & Lalmas, 2006) is based on the amount
of relative effort that a user has to make following a ranking
of a system compared to the effort an ideal ranking would
take. Though other measures are used by now in INEX, these
measures were used during INEX 2005, and our theoretical
framework is used to explain experimental results for that
same year.

Effort-precision ep is defined in (Kazai & Lalmas, 2006)

by ep[r] = iideal
irun

. iideal is measured as the rank position at

which the cumulated gain of r is reached by the ideal curve
of the ranking. irun is measured by the same rank position
in the real run. Let us assume that that three returned ele-
ments i1, i2 and i3 have relevance scores of 2, 1, and 0, re-
spectively. In an ideal system we would have the following
ranking: {i1, i2, i3}. Assume that our system however returns
{i3, i1, i2}. The cumulated gain of 2 would be reached by
the ideal system at rank 1, while our system delivers it only
at rank 3. This means ep[r] = 1/3. This demonstrates that
ep[r] = 1 indicates a perfect performance and that scores are
always between 0 and 1, as the ideal cumulated gain is al-
ways higher than or equal to the actual cumulated gain.

In 2005, ep is captured at gain-recall points gr (Kazai &
Lalmas, 2006), where gain-recall is calculated as the cumu-
lated gain value divided by the total achievable cumulated
gain. ep − gr therefore measures where the most relevant
XML elements are found in the ranking produced by a sys-
tem. The more they are concentrated in the tail of the result
list, the worse the performance. Secondly, ep− gr measures
how completely the set of most relevant elements is repre-
sented at the top of the ranking. A small number of highly
relevant elements that appear at the tail of the ranking have a
much stronger impact on the performance than, for instance,
highly irrelevant elements at the head of the ranking list. This
is the case as the denominator, which dominates ep[r], is the
actual ranking result. If the actual ranking is much worse
than the ideal ranking, ep[r] becomes very small. For a fur-
ther discussion on the relationship between the cumulative
gain measure and other standard information retrieval mea-
sure, readers are referred to (Carterette & Voorhees, 2011)
and (McSherry & Najork, 2008).

To understand how systems can develop a ranking that has
at its top only the most relevant elements, we need to look at
how systems can preserve aboutness. Our assumption is that
those elements that are about a query are related in the in-
formation they have. Then, related relevant XML elements
differ in how much relevant information they contain. Ac-
cording to our reasoning rules, a relevant element that has at
least the same relevant information or more than another ele-
ment can be found by either applying Left Monotonic Union
or Mix reasoning. As defined in the section on the aboutness
rules, LMU concludes that S⊗U ✷ T , given S ✷ T . With
respect to Mix, we can from the assumptions S ✷ T and
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Table 1

INEX thorough task evaluated using ep− gr.

Rank Model Run MAep

4 Language Model LMQrelbasedIndex 0.0829

5 Language Model LMLengthbasedIndex 0.0802

6 Language Model LMElementIndex 0.0793

7 Gardens Point GPX-1-Thorough 0.0757

14 Gardens Point GPX-2-Thorough 0.0706

U ✷ T conclude that also S⊗U ✷ T .

Looking at LMU, we already know from our discussions
from the rules section, that the added information U does
not necessarily have to be about the query. Systems, which
support LMU, have therefore problems returning only highly
relevant elements early in the ranking. Mix, however, pro-
vides a more conservative approach to monotonicity. Con-
trary to LMU, the added information is also about query.
Therefore, Mix supports better performance in ep−gr, while
with LMU we need to be more careful.

For all XML retrieval results under ep− gr, we next look
at how these left monotonic reasoning properties explain
some of the experimental outcomes.

Theoretical Analysis of Experimental Results

Table 1 presents the results for the models discussed in this
paper evaluated at INEX 2005 with ep−gr. The rank column
is the overall ranking of the model, named in the second col-
umn. The run is one of the submissions of the model, which
we will describe later on. MAep stands for Mean Average
effort precision, which is calculated by averaging the effort-
precision values whenever a relevant XML element is found
in the ranking (Fuhr, Lalmas, Malik, & Kazai, 2006). We
can clearly see how the analysed models perform for these
particular tasks. Generally speaking, both models perform
well. Next, we explain these good performances and dif-
ferences in the different runs submitted to INEX for these
models. We rely on the left-monotonic reasoning rules, we
have introduced.

With respect to ep − gr, XML language modelling
(Sigurbjörnsson & Kamps, 2005) looks at reducing the
number of indexing units with two special indexes
only: one based on element length (run referred to as
UAmsCOT LengthbasedIndex in Table 1) and another based
on past relevance assessments Qrel (run referred to as
UAmsCOT QrelbasedIndex in Table 1). These two indexes
perform particularly well and come 4th and 5th in the overall
assessment ranking (see Table 1).

LMU is fully supported by the language modelling ap-
proach. This means that the aboutness decision is preserved
across elements that share the same relevant information with
smaller elements but also contain other information. This
good performance through LMU reasoning is further fos-
tered by the fact that Mix is fully supported, too.

Looking at LMU, it is also no surprise that Qrel is the
model’s best submitted run with some distance (see Table
1). Here, the side effect of unwanted information added by
LMU reasoning occurs less likely, as Qrel contains only those
elements that according to the experience of previous INEX
years are more likely than others to be regarded as relevant.

The overall performance of Gardens Point is relatively
worse for the thorough task (Table 1) than for others in
INEX 2005 (Kazai & Lalmas, 2006). Though often the best-
performing model in INEX 2005, here it is outperformed by
several other retrieval systems, although its overall perfor-
mance is still very good (it still ranked among the 10 top
models). According to our analysis of Gardens Point, the
model differs among other things from language modelling
and other models in its decay factor D(c). We can explain the
model’s experimental behaviour with the impact of D(c) on
LMU and Mix. D(c) aims to control the impact of parent el-
ements by putting more relevance onto the relevant children.
However, these parent elements might have a better score and
should therefore appear at the top according to the ideal rank-
ing. If they do not appear at the top in the run, they reduce
the overall performance significantly (as observed when us-
ing the measure ep− gr).

Using Mix, we can demonstrate this behaviour. Let us
assume that we have a component S with a score of 3 for
a query T and a component U with a score of 2. Then ac-
cording to Mix, with S ✷ T and U ✷ T also their parent
S⊗U ✷ T . Let us further assume that without D(c) the
score of S⊗U would be 5, with D(c) it is 2.45, which re-
duces its rank in the actual run, increasing its distance from

the ideal rank and therefore decreasing ep[r] = iideal
irun

. A sim-

ilar argument can be made using LMU twice, considering a
highly relevant grandchild and child of a parent. As it re-
duces the scores of parents with highly relevant children, it
is not surprising that Gardens Point’s performance decreases.

In summary, we used our theoretical evaluation results to
compare the experimental ones for XML retrieval in order
to find out how the adjustment of an existing flat document
retrieval models compares to the creation of completely new
one, especially designed to meet the requirements of XML
retrieval. We analysed reasoning properties that support good
performance in the thorough retrieval task under ep−gr and
determined reasoning properties that supported good perfor-
mance for this task. The monotonic reasoning rules have
played an important role here, as already seen for flat doc-
ument retrieval.

Conclusions and Discussions

This paper presented a theoretical aboutness approach for
an evaluation of XML retrieval models. To this end, we
amended existing approaches and expanded the aboutness
system to demonstrate the reasoning properties and under
which conditions these properties are supported. Each of our
theoretical evaluations goes through the same steps to de-
fine the characteristics of a particular XML retrieval model:
translation and aboutness definition, analysis of rules and
comparison with pure type XML retrieval. We proposed the
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so-called pure type XML retrieval, which we use to com-
pare the behaviour of two XML retrieval models presented at
INEX. We were able to show commonalities as well as dif-
ferences between these models. We also used this theoretical
evaluation to explain experimental differences between these
XML retrieval models as evaluated in INEX.

Our theoretical evaluation is based on the logical analysis
of reasoning processes involved in XML retrieval models.
We build upon an advanced mathematisation of natural lan-
guage semantics called Situation Theory. Logic-based eval-
uation helps discover underlying assumptions of IR perfor-
mance, which are often hidden in the functional behaviour of
IR models by, for instance, tuning a priori assigned parame-
ters in such a way that they fit best the evaluation task. For
example, we saw that the D(c) factor in the GPX model can
have undesired side effects. Such transparency leads to new
insights about the behaviour of models in general and not
only for particular retrieval tasks. This can also help develop
new models. We have seen, for instance, that we should be
carefully considering the degree to which we allow mono-
tonic behaviour while developing or adapting existing re-
trieval models. In (Blanke & Lalmas, 2011), we have demon-
strated how this type of approaches, and in particular, and
again, the role of monotonicity, can be useful for analysing
specific approaches to INEX XML retrieval task (more pre-
cisely, the focused INEX task, looking at what makes a docu-
ment component focusing on the query). Here, we have pre-
sented the more general framework (what makes a document
being about a query) and the analysis of two XML retrieval
models.

These were many advantages of a logic-based theoretical
evaluation. However, there are also drawbacks, which might
prevent researchers from engaging with this type of evalu-
ation approach. Much of XML retrieval work is currently
done by adjusting weights to meet the different requirements
associated with the task being evaluated. It has been noted
(Wong et al., 2001) that the proposed theoretical evaluation
formalisms, as promoted in this paper, often deliver too high
an abstraction to cover specific cases. However, we have
tried to address such problems by introducing some math-
ematics into the Situation Theory framework delivered by
Huibers and others. To this end, for example, the notion of
conditionally supported reasoning properties was added.

Further research remains to be done into possible frame-
works of theoretical evaluations. It might turn out that logic-
based frameworks fall behind frameworks based, e.g., on re-
trieval heuristics, which have been successfully applied in
IR. For instance, Fang and Zhai (2005) and Fang et al. (2004)
have shown that such retrieval heuristics can lead to signif-
icant performance improvements for IR models. As XML
retrieval is a relatively young discipline compared to tradi-
tional IR, such heuristics, however, have not been established
yet. This might change in the future, and is something we are
looking into.

Another advantage of our theoretical evaluation approach
is that it can help an emerging field before it is mature or large
enough to develop its own evaluation strategies that reflect its
specific requirements. The presented methodology can help

in the early stages to structure design approaches and develop
evaluation strategies for such emerging field. Of particular
interest to us is to develop new information retrieval strate-
gies for the emerging web of things, i.e. a web where devices
and objects are directly interlinked. Since the web of things
relies on a graph-based data model using the W3C standard
RDF (Heath & Bizer, 2011), our approach, which combines
structure and content, could be useful and easily adopted.

As a matter of fact, there has been, to date, little work on
evaluating retrieval from the web of data (but see (Pound,
Mika, & Zaragoza, 2010) for more information about this).
There are many other emerging fields in information re-
trieval, which use evidence from a network of information to
enhance the retrieval process. These include opinion mining
or expert systems, which both use networks of related infor-
mation (reviews, expert assessments, etc.), to return relevant
results (Pang & Lee, 2008). Furthermore, beyond structural
relationships new relationships within content such as time
relationships in blog retrieval could be analysed using more
advanced reasoning rules (Zhang, Yu, & Meng, 2007). In
these emerging fields, our approach could help with design
decisions for new models but also help to understand how
traditional information retrieval techniques could be reused
for these new fields and associated approaches.
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